
PRINCIPLES OF OPERATING SYSTEMS



LECTURE 25
Deadlock Prevention



The Deadlock problem
 In a computer system deadlocks arise when

members of a group of processes which
hold resources are blocked indefinitely
from access to resources held by other
processes within the group.



Deadlock example
 Pi requests one I/O controller and the

system allocates one.
 Pj requests one I/O controller and again the

system allocates one.
 Pi wants another I/O controller but has to

wait since the system ran out of I/O
controllers.

 Pj wants another I/O controller and waits.



Strategies for handling 
deadlocks
 Deadlock prevention. Prevents deadlocks by

restraining requests made to ensure that at least
one of the four deadlock conditions cannot occur.

 Deadlock avoidance. Dynamically grants a
resource to a process if the resulting state is safe.
A state is safe if there is at least one execution
sequence that allows all processes to run to
completion.

 Deadlock detection and recovery. Allows
deadlocks to form; then finds and breaks them.



Deadlock Prevention
 1. A process acquires all the needed resources

simultaneously before it begins its execution,
therefore breaking the hold and wait condition.

 E.g. In the dining philosophers’ problem, each
philosopher is required to pick up both forks at
the same time. If he fails, he has to release the
fork(s) (if any) he has acquired.

 Drawback: over-cautious.



Cont..
 2. All resources are assigned unique numbers. A process

may request a resource with a unique number I only if it is
not holding a resource with a number less than or equal to
I and therefore breaking the circular wait condition.

 E.g. In the dining philosophers problem, each philosopher
is required to pick a fork that has a larger id than the one
he currently holds. That is, philosopher P5 needs to pick
up fork F5 and then F1; the other philosopher Pi should
pick up fork Fi followed by Fi-1.

 Drawback: over-cautions.



Cont…
 3. Each process is assigned a unique priority number. The

priority numbers decide whether process Pi should wait
for process Pj and therefore break the non-preemption
condition.

 E.g. Assume that the philosophers’ priorities are based on
their ids, i.e., Pi has a higher priority than Pj if i <j. In this
case Pi is allowed to wait for Pi+1 for I=1,2,3,4. P5 is not
allowed to wait for P1. If this case happens, P5 has to
abort by releasing its acquired fork(s) (if any).

 Drawback: starvation. The lower priority one may always
be rolled back. Solution is to raise the priority every time
it is victimized.



Cont..
 4. Practically it is impossible to provide a

method to break the mutual exclusion
condition since most resources are
intrinsically non-sharable, e.g., two
philosophers cannot use the same fork at
the same time.


